If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x-25=0
a = 3; b = 1; c = -25;
Δ = b2-4ac
Δ = 12-4·3·(-25)
Δ = 301
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{301}}{2*3}=\frac{-1-\sqrt{301}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{301}}{2*3}=\frac{-1+\sqrt{301}}{6} $
| 7/11=n/5 | | -11=2.75s | | 7/24=7/8y | | x-16/5=4 | | 8m+56m+17=90 | | -40=-4-3k | | 4(r+9)=60 | | 1-2a=a-1+3-13 | | (X+3)^2+k=0 | | 7(s+7)-2(5-s)=9(s-5) | | 4(r+)=60 | | 5y-8+y+26=6y+30-4y | | -.75a+2=5 | | 2x^2+8x=28 | | 3x-2(x+30)=0 | | 9n=11 | | x/3-10=-15 | | 2(4c+6)-3c=5c+11 | | 7+7x-5=6x+20-2x | | -61=d+(-18 | | -3x+4=6x+3-8x | | 10101010101p=20 | | 4/x+12=-14 | | 3/8(2x+16)−2=13 | | 1y=10191019101910191019 | | 14+4s=10s-12 | | -59-4x=106+7x | | -1/2x-2=-10 | | (P/3)-(3p/8)=3 | | 2x|9+2x|3=8 | | 3x+14+5x-2=10x-18 | | w÷9=9 |